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Abstract
Objective. The main objective of this research was to study cortico-muscular, intra-cortical, and
inter-muscular coupling. Herein, we established a cortico-muscular functional network
(CMFN) to assess the network differences associated with making a fist, opening the hand, and
wrist flexion. Approach. We used transfer entropy (TE) to calculate the causality between
electroencephalographic and electromyographic data and established the TE connection matrix.
We then applied graph theory to analyze the clustering coefficient, global efficiency, and
small-world attributes of the CMFN. We also used Relief-F to extract the features of the TE
connection matrix of the beta2 band for the different hand movements and observed high accuracy
when this feature was used for action recognition.Main results. We found that the CMFN of the
three actions in the beta band had small-world attributes, among which the beta2 band’s
small-world was stronger. Moreover, we found that the extracted features were mainly
concentrated in the left frontal area, left motor area, occipital lobe, and related muscles, suggesting
that the CMFN could be used to assess the coupling differences between the cortex and the muscles
that are associated with different hand movements. Overall, our results showed that the beta2
(21–35 Hz) wave is the main information carrier between the cortex and the muscles, and the
CMFN can be used in the beta2 band to assess cortico-muscular coupling. Significance. Our study
preliminarily explored the CMFN associated with hand movements, providing additional insights
regarding the transmission of information between the cortex and the muscles, thereby laying a
foundation for future rehabilitation therapy targeting pathological cortical areas in stroke patients.

1. Introduction

Establishing the distinct functional and structural
relationship between the cortex and the musculature,
in the context of movement, is a major goal of
neurology. Electroencephalography (EEG) and elec-
tromyography (EMG) help define this relationship by
recording the signals produced by cortical activity,
and the signals produced by muscle group activity,
respectively. During body movement, the motor cor-
tex sends a command to the control limb; at the same
time, the limb returns the signal to the cortex to pro-
duce the action. This relationship between the cortex
and themuscles can be expressed as cortico-muscular

coherence (CMC) [1] The CMC between EEG and
EMG has been proposed to reflect a signal that
the cortex is regaining muscle control. The cortico-
muscular functional network (CMFN) can be used, as
such, in the fields of rehabilitation prediction, rehab-
ilitation therapy, and artificial limb support. Krauth
et al [2] demonstrated that, in stroke patients, CMC
can serve as a marker of motor recovery and can
provide information on the specific cortical areas that
respond to rehabilitation treatments based on real-
time EEG. Artoni et al [3] showed that even under
the condition of stationary treadmill walking, the
human motor cortex could actively control the con-
tralateral leg muscles. Lai et al [4] showed that the
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CMC can detect the neuromuscular changes induced
by peripheral electrical stimulation. Therefore, our
research focused on the establishment and analysis
of the CMFN to improve our understanding of this
relationship.

Recently, cortico-muscular coupling analytical
methods have made great progress. The main meth-
ods to establish functional coupling are the Pear-
son’s correlation coefficient [5], spectral coherence
[6], mutual information [7], phase locking value [8],
and partial directed coherence [9, 10]. The coupling
model between cortical muscles remains unknown,
and the connection between EEG and EMG data has
nonlinear causality. Therefore, the Pearson’s correla-
tion coefficient and spectral coherence cannot effect-
ively describe the coupling characteristics between
the cortex and the muscles. Transfer entropy (TE)
does not require an established model or a nonlin-
ear quantitative analysis and can hence estimate the
directional strength of two-way coupling between the
cortex and the muscles (downlink EEG→ EMG and
uplink EMG → EEG) [11]. Shovon [12] demon-
strated the application of TE in the evaluation of dir-
ected functional brain networks. This study focused
on TE values to assess the coupling between the
cortex and the muscles. The TE connection matrix
was filtered using the threshold method to remove
false connections, and an effective connection matrix
was obtained. Thereafter, the CMFN was established
using the efficient connection matrix.

The cortex and themuscle groups form a complex
system composed of hundreds of billions of neurons
[13]. All movements are coordinated bymultiple cor-
tical regions and multiple muscles working together.
Considering several muscle groups of the cortex and
upper limbs as a whole, the application of the study
of complex network theory [14] is very important
for understanding the coupling relationship between
the cortex and the muscle groups and for elucidating
the behavioral relationship between them. For regu-
lar networks, the small-world networks in complex
networks have smaller, shorter paths but possess lar-
ger clustering coefficients for random networks. In
recent years, research on the prediction and diagnosis
of brain diseases has garnered the attention of many
scholars. Majnu [15] used a complex network to eval-
uate patients in the early stages of Alzheimer’s dis-
ease and discovered that the volumetric network was
affected in a non-global manner during the neurode-
generative process.

Currently, most scholars recognize hand move-
ments by fusing information features [16]. In this
study, we identified hand movements through the
TE connection matrix. As a feature, we took the
value of each connection of the connection matrix
(25 × 25) for each action that passed the TE calcu-
lations, such that there were 600 (25 × (25 − 1))
eigenvalues. Next, we extracted the relevant features
from the 600, and deleted irrelevant features.We used

the extracted features to recognize the hand move-
ments and obtained high recognition accuracy. We
also discovered that these feature edges were mainly
concentrated in the connection between the left cor-
tex area and its related muscles. These results demon-
strate that the CMFN could be used to detect dif-
ferences in the coupling between the cortex and the
muscles for different hand movements.

2. Methods

2.1. Framework
Weanalyzed EEG and EMGdata from six participants
who performed three hand movement experiments.
The establishment and analysis of the CMFN based
on the recorded data included the following steps
(shown as a schematic in figure 1): (a) EEG and EMG
data were preprocessed and filtered into four fre-
quency bands (theta: 4–8 Hz, alpha: 8–13 Hz, beta1:
13–21 Hz, and beta2: 21–35 Hz). (b) The TE con-
nection matrix was obtained by calculating the causal
relationship between the data by the TE. (c) The TE
connection matrix was selected by the threshold (T),
and the false connections between electrodes were
removed, allowing construction of a directed con-
nection network (connection matrix). (d) Accord-
ing to graph theoretical methods, it was shown that
the CMFN has small-world attributes, after which
the preliminary CMFN was established. (e) A Relief-
F pair TE connection matrix was used to extract
features for action recognition. (f) Training support
vector machines (SVM) and logistic regression (LR)
models were used for action recognition.

2.2. Participants and experimental design
Six healthy participants were recruited (four males
and two females; age: 22 and 23 years). All parti-
cipants provided signed informed consent according
to the Helsinki Declaration, and all measurements
were approved by the Hangzhou Dianzi University’s
Institutional Review Board. The participants, who
had no history of mental illness participated in the
study. The participants did not drink alcohol, cof-
fee, strong tea, or sports drinks the day before the
experiment nor did they smoke or exercise vigor-
ously. Two hours before the experiment, the parti-
cipants’ hair was shampooed to remove cutin and
their hair was blown dry. The laboratory consisted of
a quiet shielded room, in which the air conditioning
and lights were turned off to reduce the power fre-
quency interference. Participants sat quietly in com-
fortable seats facing the screen and made a fist (MF),
opened the hand (OH), and performed wrist flexion
(WF)movements according to the instructions on the
screen. The general experimental process is illustrated
in figure 2 and includes the preparation and rest time
(5 min), each action time (3 s) and the time between
each action to rest and prepare for the subsequent
action (1 min). Each subject performed the above
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Figure 1. Establishment and analysis of the CMFN. (a) Establishment and calculation of CMFN. (b) Actions classification.

Figure 2. Experimental design. The time from start to end
of each action is 3 s.

experiment ten times, and the rest time between each
experiment was 10 min.

In the experiments, a 64 channel wireless EEG
amplifier (NeuSen.W64, Neuracle, China) was used,
with a sampling frequency of 1000 Hz. Before data
collection, the impedance was kept below 5 kΩ by
injecting a conductive paste. The selected motor cor-
tex electrodes are shown in figure 3(a), including 19
channels (motor cortex electrode: AF3, AF4, F3, FZ,
F4, FC3, FCZ, FC4, C3, CZ, C4, CP3, CP4, P3, PZ,
P4, PO3, POZ, and PO4) selected from 59 channels
from the cortical EEG. Such electrode selection facil-
itates a thorough assessment of the motor cortex, and
ensures that the signal interference between the elec-
trodes remains small. EMG recordings were collected
using the Trigno TM wireless EMG (DelsysInc, Nat-
ick, MA, USA) equipment with a sampling frequency
of 1926 Hz. The EMG data were acquired at the bra-
chioradialis (Br), flexor digitorum superficialis (Fd),

Figure 3. Experimental process. (a) EEG electrode
arrangement. (b) Participants take corresponding actions
according to the instructions on the screen.

extensor digitorum (Ed), extensor carpi ulnaris (Ec),
flexor carpi ulnaris (Fc), and bicipital muscle of arm
(Bm). The participants followed the instructions on a
computer screen (figure 3(b)).

2.3. Pre-processing
The EEGLAB [17] toolbox was used to process the
EEG data. To determine the average reference for the
EEG data, the AAR [18] plugin was used for blind
source separation of EEG data to remove EMG and
electro-oculogram (EOG) ingredients. The ICA was
used to remove other artifacts, after which the data
were processed by bandpass filtered between 1 and
38 Hz (two-pass Butterworth filter at the third order)
and finally downsampling to 250Hz. In order to elim-
inate part of the somatosensory response contained in
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Figure 4. Analysis of EEG and EMG. (a) Averaged
topographical map of brain of MF, OH and WF. (b) EMG
response in both temporal and time- frequency domain of
MF, OH and WF (movement started at 2 s).

the EEG, firstly, the average value between the wave-
forms of the left cortex area and the right cortex area
was calculated. Secondly, the difference between the
left cortex area and the right cortex areawas calculated
as a difference wave [19]. Finally, the difference wave
was subtracted from the waveform in the left cor-
tex area. The EMG data were first denoised by wave-
let [20] and bandpass filtered between 1 and 38 Hz
(two-pass Butterworth filter at the third order). The
datawere then processed by downsampling to 250Hz.
Finally, EEG and EMG data were matched according
to the type of movement and time.

Wavelet analysis on the preprocessed EEG was
performed, the energy of each lead found and
rendered into an energy topographical map of the
brain on a two-dimensional plane. As shown in the
figure 4(a), topographical map of brain of average
energy of MF, OH and WF movement (times: 0–3 s),
EEG energy is mainly concentrated on the hemi-
sphere of the left frontal lobe during MF, OH and
WF actions. For the preprocessed EMG signal, first we
superimpose and average the time domain informa-
tion from 2 s before the start of the action to 3 s after.
The wavelet function was then used to perform time-
frequency (TF) [21] analysis of the EMG and aver-
age of all EMG time domain (figure 4(b)). It can be
seen from the time-domain information that the lar-
ger amplitudes are Fd and Ed inMF, Ed and Ec inOH,

and Fd and Fc in WF. It could be seen from the aver-
aged TF maps that the changes in myoelectric energy
in the 1–38 Hz channel were all caused by movement.

2.4. TE
The information of multiple time and space inter-
actions of the EEG and EMG data can indicate the
functional relationship between the cerebral cortex
and muscle. TE is a non-parametric statistic measur-
ing the amount of directed (time-asymmetric) trans-
fer of information between two random processes.
The TE from one process, denoted x, to another pro-
cess, denoted y, represents the amount of uncertainty
reduced by knowing the past value of x and the future
value of y given the past value of y. For the autore-
gressive process, TE is reduced to Granger causality.
Thus, when the model of Granger causality is not
established, TE is very beneficial to analyze nonlinear
signals (e.g. EEG, EMG, and EOG) [22].

TE estimates the amount of information passed
to a time series that does not depend on its own past
activities, but on the past activities of another time
series. Given two processes x and y, the TE from y to
x is computed as:

TEy→x =
∑

xn+1,xn,yn

p(xn+1,xn,yn)

× log
p(xn+1,xn,yn).p(xn)

p(xn,yn).p(xn+1,yn)
(1)

where, p(xn+1, xn, yn) is the transition probability.

2.5. Graph analysis
An N × N (N = 25, 19 EEG electrodes and
six EMG electrodes) binary graph cortico-muscular
functional coupling network, consisting of nodes
(cortex and muscle components) and directed edges
(connectivity) between the nodes, could be construc-
ted by applying a threshold (T, top 15% connection
strength) to the connection matrix calculated by TE.

The clustering coefficient [23] of node i in the
graph refers to the ratio between the actual number of
edges between all neighboring nodes connected with
node i (excluding node i) and the number of edges
with the maximum energy between these neighbor
nodes. The clustering coefficient C(i) is defined as:

C(i) =
2Ei

Ki(Ki − 1)
. (2)

For the whole network, the value of the clustering
coefficient (C) is equal to the average value of each
node C(i):

C=
1

N

N∑
i=1

C(i). (3)

The characteristic path length (L) of the network is
the average of the shortest path length between all
node pairs:
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L=
1

N(N− 1)

∑
i̸=j

lij. (4)

The global efficiency (Eglobal) is the mean of the recip-
rocal of the shortest path length between all node
pairs:

Eglobal =
1

N(N− 1)

∑
i̸=j

1

Li,j
. (5)

The small-world coefficient (σ) is defined as:

σ =
Creal Lrandom
LrealCrandom

. (6)

If σ > 1, the studied network has small-world
characteristics.

2.6. Relief-F
Relief-F [24] represents Kononeill’s expansion of
relief in 1994, which can be used to address multi-
category problems.When theRelief-F algorithmdeals
with multiple types of problems, it randomly takes a
sampleR from the training sample set each time, after
which it finds the k nearest neighbor samples (near
hits) of R from the sample set of the same type as
R. Subsequently, it finds k nearest neighbor samples
(near misses) in the sample set, and then updates the
weight of each feature:

δ j =
∑
i

−diff(x j
i , x

j
i,nh)

2 +
∑
l ̸=k

(pl × diff(x j
i ,x

j
i,l,nm)

2)

(7)

where pl is the proportion of class l samples in
dataset D.

2.7. Statistical analysis
Independent (unpaired) sample t-tests [25]were used
to compare the difference between the TE connection
matrices of the three hand movements. Since mul-
tiple statistical tests have been performed on the same
data set, here we used false discovery rate (FDR) [26]
to performmultiple comparison correction, and then
averaged the corrected FDR values as the p. The signi-
ficance level of all statistical analyses is set to p < 0.05.

2.8. 5× 2 cross-validation
Relevant or similar regression models tend to overfit
the data, and the results often fail to be generalized to
new data. Some brain behavior studies are not cross-
verified, which makes it difficult to evaluate the uni-
versality of the results. Proper cross-validation is vital
to ensure independence between feature selection and
prediction/classification, thereby eliminating spuri-
ous effects and incorrect overall level inferences.
Owing to our limited number of data sets, when
using the cross-validation test estimationmethod, the
training sets of different rounds overlap to a certain
extent, resulting in an error rate that is not actually
independent and leading to the overestimation of the

probability of the hypothesis being true. To alleviate
this problem, we used a ‘5× 2 cross-validation’. Here,
we use python to write a script to randomly divide all
the data of each movement sample according to the
ratio of the training set to the test set of 4:1, and then
combine the data into a training set and a test set. And
then perform training and testing, and perform five
iterations to obtain an average accuracy.

3. Results

3.1. TE connectionmatrix
We analyzed the EEG and EMG data recorded from
six participants duringMF, OH, andWFmovements.
However, due to the interference of various factors
in the collection process of the experiment, a total
of 54 sets of MF, 52 sets of OH, and 47 sets of
WF were collected. As shown in figure 4, the pro-
cessed EEG and EMG data were filtered into four
frequency bands (theta: 4–8 Hz, alpha: 8–13 Hz,
beta1: 13–21 Hz, and beta2: 21–35 Hz). For each
participant and experimental action, we calculated
the TE connection matrix from cortex to cortex
(EEG → EEG), cortex to muscle (EEG → EMG),
muscle to cortex (EMG → EEG), and muscle to
muscle (EMG → EMG) electrodes from the filtered
time series. Finally, the TE connection matrix was
averaged and summarized among the participants.
For the theta and alpha frequency bands, the values
of TE between the cortical electrode and the muscle
electrode were very small, while the beta1 and beta2
frequency bands were the opposite (figures 5(a)–(c)),
indicating that the beta wave is the main information
carrier for all the participants to perform the three
hand movements. We found that the mean values of
the TE between EEG→ EMG and EMG→ EEG were
close (figures 5(a)–(c)), indicating that the informa-
tion transmission between the cortex and themuscles
is bidirectional.

Second, we sought to better understand the TE
connection matrix. For each participant and exper-
imental action, we calculated the TE between each
electrode of the cortex and the muscles. As shown
in figure 6, the TE connection matrix of each par-
ticipant’s three hand movements in four frequency
bands was displayed in the form of a heat map.

Comparing the heat map of the TE connection
matrix of different hand movements of the same
participant revealed that there are certain differ-
ences between them (figures 6(a)–(c)). We aimed
to test whether the TE connection matrix could be
used to recognize hand movements. We performed
t-tests between the same actions and different actions
on the TE connection matrix of 54 groups of MF
movements, 52 groups of OH movements, and 47
groups of WF movements calculated for all parti-
cipants (table 1). We determined that there is a sig-
nificant difference (p < 0.05) in the TE connection
matrix between the same action in the theta and alpha
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Figure 5.Mean values and standard deviation of different TE connection matrices (EEG→ EEG, EEG→ EMG, EMG→ EEG,
and EMG→ EMG) in four frequency bands (theta, alpha, beta1, and beta2) for three actions: (a) MF, (b) OH, and (c) WF.

Figure 6. Heat map of TE connection matrix: (a) MF,
(b) OH, and (c) WF.

bands. This indicates that the TE connection mat-
rix of theta and alpha bands cannot be used as the
classification feature for the three hand movements,
which is possibly related to the fact that the theta
and alpha waves are not the main information car-
riers involved when participants perform the three
hand movements. However, for the beta1 and beta2
bands, as expected, there were significant differences
(p < 0.05) between different actions, but there were
no significant differences (p> 0.05) between the same
actions. This result revealed that the TE connection
matrix of the beta1 and beta2 bands can be accurately
used to classify these three hand movements.

3.2. Network characteristics
In this study, we selected the edges of the top 15%
connection strength as the threshold (T) for binar-
ization in all frequency bands, which is the prefer-
ence of previous researchers [27, 28]. Such a threshold
selection could ensure that the CMFN is neither a
very sparse nor dense graph. We calculated the C, L,
and Eglobal usingMatlab’s Brain Connectivity Toolbox
[29]. In figure 7, we show the mean value of C and
Eglobal of the TE connection matrix of the three hand
movements at 15% network density. We observed
that the mean value of C in the beta1 and beta2 bands
is larger, while they are generally smaller in the theta

and alpha bands (figure 7(a)), indicating that the elec-
trical activity in the participants’ brains during hand
movement mainly consists of beta waves. It is worth
noting that in the beta1 and beta2 frequency bands,
the mean value of the C is largest for WF, followed by
the MF movement, whereas the OHmovement is the
smallest, whichmay be indicative of the degree of cor-
tical and muscular involvement associated with the
different movements. We compared the mean of the
Eglobal of the three hand movements (figure 7(b)). We
observed that themeanEglobal of the three handmove-
ments are not significantly different but aremore sim-
ilar in the beta2 band. This suggests that there may
be more components of the beta2 wave when the
participants perform hand movements. Moreover, it
indicates that the overall information transmission
efficiency of the cortex and the muscles during dif-
ferent movements is similar.

Many scholars have demonstrated that the func-
tional network of the brain has small-world attrib-
utes [30–32]. Here, we sought to ascertain whether
the CMFN also has small-world attributes. First, we
constructed 50 randomnetworks with the same num-
ber of nodes, and calculated the average of C and L.
In figure 8, we show the mean values of σ for the
three actions in the four bands. It can be clearly seen
that both the beta1 and beta2 frequency bands have
small-world attributes (σ > 1), whereas the theta and
alpha frequency bands have the opposite attributes.
At the same time, we also noticed that in the beta1
and beta2 bands, the WF movement displayed the
largest σ, followed by the MF movement and that of
the OH movement being the smallest. This suggests
that σ may be related to the difficulty of the action.
It is worth noting that the σ of the beta2 band in
the three actions is slightly higher than that of the
beta1 band. This phenomenon was also found when
calculating the mean value (figures 5(a)–(c) and C
(figure 7(a)) of the TE connectionmatrix. This indic-
ated that the participants had greater beta2 involve-
ment in the electrical activity in their brains when
performing the three hand movements. Therefore,
we focused on the beta2 frequency band for further
investigation.
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Table 1. T-test (95% confidence interval) between and within MF, OH, and WF groups.

Theta Alpha Beta1 Beta2

Within MF groups p= 0.031∗ p= 0.357 p= 0.330 p= 0.542
Within OH groups p= 0.045∗ p= 0.034∗ p= 0.253 p= 0.473
Within WF groups p= 0.018∗ p= 0.043∗ p= 0.441 p= 0.492
Between MF and OH groups p= 0.033∗ p < 0.01∗ p= 0.031∗ p= 0.036∗

Between MF and WF groups p= 0.037∗ p= 0.017∗ p < 0.01∗ p < 0.01∗

Between OH and WF groups p= 0.034∗ P = 0.021∗ p < 0.01∗ p < 0.014∗

Figure 7. Network characteristics of the CMFN. (a) The
mean and standard deviation of C of the CMFN of three
hand movements. (b) The mean and standard deviation of
Eglobal of CMFN for three hand movements.

Figure 8. The mean and standard deviation of σ of the
CMFN.

In order to better understand the CMFN, we
superimposed and averaged the TE connection mat-
rix of the beta2 band of each action, and then per-
formed a threshold (T, the top 15% connection
strength) binarization of the matrix. As shown in
figure 9, a directed connection diagram of the three
handmovements was generated.We found that in the
directed connection diagram of these three actions,
the most closely connected is the left motor area and
its related muscles, whichmay indirectly indicate that
the body’s limbmovement is mainly controlled by the

Figure 9. Directed connection diagram. (a) MF, (b) OH,
and (c) WF.

contralateralmovement area. By simple visual inspec-
tion, the directed connection graph of the three hand
movements was found to be between the randomnet-
work and the regular network, with the characteristics
of a small-world network, as was also verified in the
above calculations (figure 8).

3.3. Action recognition
In the experiment, we found that there are signific-
ant differences in the TE connection matrix of the
three actions in the beta2 band (table 2). Therefore,
the TE connection matrix was used as the classific-
ation basis for these three actions. First, using each
directed edge of the TE connection matrix as a fea-
ture, there was a total of 600 (25× (25− 1)) features.
Second, we set the labels of the TE connection mat-
rix of 54 groups of MF movements, 52 groups of OH
movements, and 47 groups of WFmovements to 1, 2,
and 3, respectively. Finally, these labeled TE connec-
tion matrices were input into the Relief-F script writ-
ten by Python to extract the top 20 features with the
best classification effect (figure 10(b) and 20 features
of extraction). In figure 10(a), we randomly extrac-
ted three sets of TE connection matrices from each
action, and demonstrated the feature value of each
action. In this drawing, each point represents the TE
value from one electrode to the other. This is shown
in figure 9(c), which displays the extracted features in
the human body model in the form of directed edges.
We observed that the feature edges were mainly con-
centrated in the left cortical area and between the cor-
tex and themuscles. This also indicates that themove-
ment of the human body is related to the contralateral
cortex area and its related muscles, and might also
be used to explore the role of different areas of the
CMFN. It is worth noting that most connected nodes
are mainly concentrated in the left frontal area (AF3,
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Table 2. Results of the training classification of three movements.

20 features 15 features 10 features 5 features

SVM 84.17% 75.49% 69.63% 55.75%
LR 83.03% 73.78% 67.12% 54.93%

:

Figure 10. Twenty feature edges extracted from the TE
connection matrix of three hand movements with Relief-F.
(a) The corresponding value of the extracted feature in the
TE connection matrix. (b) Twenty extraction features.
(c) The specific area corresponding to the extracted feature
edge in the human body model.

F3), and that the frontal lobe area may be expected to
play a significant role in human limb movement, the
energy in the averaged topographicalmap of the brain
is also mainly concentrated in this area (figure 4(a)).
We have observed that not all muscles are connected
to the cortex, only Fc, Ed, Fd, and Bm are connec-
ted, and Fc, Ed, and Fd are directly related to the three
actions [33], This is also reflected in the time domain
diagram of the action (figure 4(b)). This shows that
theCMFNwehave established can be applied to study
human body movements.

To classify the three hand movements, first,
extract the first 20 features, the first 15 features, the
first 10 features and the edges of the first 5 features
corresponding to each TE connection matrix to con-
struct a new data sample with labels. Second, we used
Python’s sklearn [34] package to build the SVM and
LR trainer, and finally, we performed a 5 × 2 cross-
validation on the data samples, obtaining the aver-
age accuracy of the training model. Table 2 shows
the average accuracy of the recognition of these three
actions by the two models. It can be clearly seen
that when the first 20 features are used for classifica-
tion, the accuracy of SVM reaches 84%. Furthermore,
when the first 15 features are used, the accuracy can
reach 75%, andwhen only the first 5 features are used,
the accuracy is close to 55%. This indicates that the
TE connection matrix can be used for hand move-
ment classification and can achieve a high classific-
ation accuracy.

4. Discussion

In this study, we proposed a new functional net-
work using EEG and EMG data to construct a

CMFN. This network helped to analyze the relation-
ship between the cortex and the muscles. We con-
structed a CMFN and analyzed the MF, OH, and
WF movements of six participants. James et al [35]
indicated that all subjects showed significant continu-
ity (0.086–0.599) between the MEG and muscles in
the 15–30 Hz range when controlling the robot lever.
In our research, we confirmed that the TE connec-
tion matrix of hand movements had the strongest
causal relationship in the beta1 and beta2 band (13–
35 Hz), and that the causal relationship was slightly
greater in the beta2 band than in the beta1 frequency
band (figures 5(a)–(c)). This result indicates that beta
waves can be the carrier of motor cortex informa-
tion, which is consistent with Takahashi’s results [36].
However, the mean values of the TE connection mat-
rix of EEG → EMG and EMG → EEG on the theta
frequency band remain very small (figures 5(a)–(c)),
which suggests that theta waves are not a medium for
information transmission between the cortex and the
muscles; the lack of exercise-related components in
the theta wave in EMG signals may also be involved.

When we analyzed the complex network charac-
teristics of the CMFN, we found that they have small-
world attributes in the beta1 and beta2 frequency
bands. Interestingly, in the beta1 and beta2 frequency
bands, the σ (figure 8) and C (figure 7(a)) of the WF
movement were the largest, followed by those of the
MF with those of the OH being the smallest. Dani-
elle Smith’s research on small world networks shows
that there is a close relationship between small world
topology and dynamic complexity [37]. Small world
networks have high global efficiency and high local
efficiency or low-cost fault tolerance. The clustering
coefficient can be considered a measure of the local
efficiency of information transmission [23]. These
indicate that with higher σ and C, the global and
local efficiency of information transfer between nodes
are relatively high. Here we assume that the reaction
time of each participant has a negligible impact on
the experiment, so in the same time, the more com-
plex the completed action, the higher the efficiency
of information transmission. These results indicate
that the characteristics of the complex network of
the CMFN are related to the complexity of the hand
movements. WF movements have a relatively high
complexity, requiring a greater degree of cooperation
between the cortex and the muscles, while OHmove-
ments, in contrast, have relatively low complexity.

In our research, we used the TE connection mat-
rix between the cortex and the muscles of the beta2
frequency band to recognize the hand movements.
Previous studies mainly focused on the features of
the original information. Shime et al [38] achieved
an accuracy of 67% when classifying three different
stretching movements of the same limb by decod-
ing EEG. Avik et al [39] achieved an accuracy of
83.33%when classifying six different grasping actions
by extracting important features from the original
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EMG signal. Paulo et al [40] used an artificial neural
network to classify hand movements and gestures
using EMG from the two forearmmuscles. The accur-
acy rate reached over 85%. Although these methods
can achieve high recognition accuracy even higher
than ours, they only reflect the characteristics of the
signal and cannot reflect the coupling between the
cortex and the muscles. Frederic et al [41] proposed
a real-time gesture recognition system based on sur-
face EMG signals. Five gesture sets supported by Myo
armbands achieved an overall accuracy of 95%. They
extracted ten equally-weighted features from both
the time and the frequency domain (through a fast
Fourier Transformation). Although our recognition
results rely on EEG and EMG information inter-
cepted at a fixed time, our research focus is differ-
ent from Frederic et al. In this paper, we mainly
used action recognition to verify the reliability of
the difference between the cortical and muscle coup-
ling between different hand movements extracted.
This study aimed to link the CMFN with the actual
movements of the individual, analyze the coupling
between the cortex and the muscles during different
hand movements, and perform movement recogni-
tion. When performing the right-hand stretch, the
inferior frontal cortex and left primary motor area
are activated [42]. In our research, we also found
that the differences between participants in differ-
ent hand movements were mainly concentrated in
the left frontal area (AF3, F3), left motor cortex
(C3), occipital lobe (PO4), and their related muscles
(figure 10). Participants mainly used the instructions
on the screen to perform corresponding actions dur-
ing the experiment, which led to different visual stim-
uli, and may account for the PO4 nodes being found
to be connected to many feature edges. The parti-
cipants also may not have been very uniform when
performing the hand movements in the experiment,
so they also moved their elbows. This may be why Bm
is also connected to the characteristic edge. These res-
ults all indicate that the CMFN we have established
in the beta2 band can be effectively used to assess
the coupling between the cortex and muscles. Future
research should focus on stroke patients to analyze the
patient’s diseased areas.

This experiment was successful. However, due to
the limited number of participants, the results need
to be confirmed by future studies involving larger
cohorts.

5. Conclusion

This study introduces a new functional network called
the CMFN. We applied TE to establish the con-
nection matrix between the cortex and the muscles
and explore the coupling between the cortex and
the muscles. The results demonstrated the success-
ful application of the developed CMFN to analyze
the transmission of information between the cortex

and the muscles. Additionally, it can also be applied
for gesture recognition, thus providing more insights
regarding the transmission of information between
the cortex and the muscles. Future research should
continue to explore cortico-muscular coupling to
provide a deeper understanding of the relationship
between the cortex and the muscles. In the future,
this information can potentially be applied for treat-
ing stroke patients.
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